抽象代數之母──德國天才女數學家 Emmy Noether 埃米‧諾特

google-emmy noether_20150323

今天 Google Doodle 紀念德國女數學家埃米·諾特 Emmy Noether (1882.3.23-1935.4.14) 的133歲誕辰,數學及物理領域學生、研究者對她的「諾特定理」應該不陌生,但非理工領域的朋友如何認識埃米·諾特呢?除了從中文維基百科入手,不妨閱讀1935年愛因斯坦於 The New York Times 撰寫的紀念文〈The Late Emmy Noether〉,了解埃米·諾特於代數界的貢獻,以及她身為猶太女性在學術研究領域所遭遇的波折,以下摘錄自顏一清教授翻譯之段落:

她是代數界的奇葩,女性受高等教育以來最傑出的學者。她在代數領域中發現的概念式方法證實可使現代代數學發展起來。她在 Göttingen大學教學多年,雖經 Hilbert 等人的極力爭取,於公無法取得她該有的名位。但是她還是無怨無悔地教導,影響週遭的學生與學者。可是,她無私的奉獻所換得的報酬卻是因猶太人而被停止教學,讓她失去維持簡單的生活與做研究的機會。幸好經有識人士的安排她得以在美國 Bryen Mawr 學院與 Princeton 執教。由於同事們的友愛及學生們的愛戴,使她的晚年過得快樂、充實。

輔大數學系顏一清教授援引諸多文獻撰寫了〈Emmy Noether的一生〉,帶領一般讀者由科普、了解科學家生平故事的角度深入認識 埃米·諾特,這篇文章可由 Google Scholar找到免費全文。如果在台大圖書館整合查詢系統,搜尋 “埃米·諾特” 也能找到類似的文章,如中國學者於《自然雜誌》發表的〈20世紀最優秀的女數學家——埃米·諾特〉。另外,《科學人雜誌》2010年8月號〈宇宙能量正在流失?〉一文也介紹諾特發現的「當大自然展現出連續對稱性時,就會伴隨著能量守恆定律。」,欲知詳情者可至台大圖書館訂購的科學人雜誌知識庫閱讀此文。

Noether   inoethe001p1 圖片來源1圖片來源2

 

在台大圖書館館藏目錄能查到 Emmy Noether 的相關書籍如下:

書名 作者 出版者 年代 館藏地
Emmy Noether, 1882-1935 Auguste Dick ; translated by H.I. Blocher Birkhäuser 1981 數學系圖
Emmy Noether : a tribute to her life and work James W. Brewer, Martha K. Smith M. Dekker 1981 數學系圖
Emmy Noether in Bryn Mawr : proceedings of a symposium (百年誕辰研討會論文集)
Bhama Srinivasan and Judith D. Sall Springer-Verlag 1983 數學系圖
A history of algebra : from al-Khwarizmi to Emmy Noether B.L. van der Waerden Springer-Verlag 1985 數學系圖
The heritage of Emmy Noether Mina Teicher Bar-Ilan University 1999 數學系圖
Emmy Noether’s wonderful theorem Dwight E. Neuenschwander Johns Hopkins University Press 2011 總圖4F科技資料區、
物理系圖
Complexities : women in mathematics Bettye Anne Case, Anne M. Leggett Princeton University Press 2005 總圖4F科技資料區

 

另外,整合查詢系統也能查到本館訂購的期刊、線上公開取用網站中與其相關之文章,減少分批在各綜合領域、數學專門資料庫搜尋的工夫。例如下列文獻:

  1. Dieudonne, J. (1984). Emmy Noether and algebraic topology. Journal of Pure and Applied Algebra, 31(1), 5-6. doi: 10.1016/0022-4049(84)90071-9
  2. Srinivasan, B. (2010). “Emmy Noether: The Mother of Modern Algebra,”. The College Mathematics Journal, 41(1), 72-73.
  3. McLarty, C. (2011). Emmy Noether’s first great mathematics and the culmination of first-phase logicism, formalism, and intuitionism. Archive for History of Exact Sciences, 65(1), 99-117. doi: 10.1007/s00407-010-0073-y
  4. Berlyne, D. (2014). Ideal Theory in Rings (Translation of “Idealtheorie in Ringbereichen” by Emmy Noether).

 


【參考資料】


by Chih-Lo Chen